Preconditioning and Two-Level Multigrid Methods of Arbitrary Degree of Approximation

نویسنده

  • I. Gustafsson
چکیده

Let A be a mesh parameter corresponding to a finite element mesh for an elliptic problem. We describe preconditioning methods for two-level meshes which, for most problems solved in practice, behave as methods of optimal order in both storage and computational complexity. Namely, per mesh point, these numbers are bounded above by relatively small constants for all h > h0, where h0 is small enough to cover all but excessively fine meshes. We note that, in practice, multigrid methods are actually solved on a finite, often even a fixed number of grid levels, in which case also these methods are not asymptotically optimal as h -> 0. Numerical tests indicate that the new methods are about as fast as the best implementations of multigrid methods applied on general problems (variable coefficients, general domains and boundary conditions) for all but excessively fine meshes. Furthermore, most of the latter methods have been implemented only for difference schemes of second order of accuracy, whereas our methods are applicable to higher order approximations. We claim that our scheme could be added fairly easily to many existing finite element codes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multigrid Preconditioning for the Biharmonic Dirichlet Problem

A multigrid preconditioning scheme for solving the Ciarlet-Raviart mixed method equations for the biharmonic Dirichlet problem is presented. In particular, a Schur complement formulation for these equations which yields non-inherited quadratic forms is considered. The preconditioning scheme is compared with a standard W-cycle multigrid iteration. It is proved that a Variable V-cycle preconditio...

متن کامل

Auxiliary space multigrid method based on additive Schur complement approximation

In this paper the idea of auxiliary space multigrid (ASMG) methods is introduced. The construction is based on a two-level block factorization of local (finite element stiffness) matrices associated with a partitioning of the domain into overlapping or non-overlapping subdomains. The two-level method utilizes a coarse-grid operator obtained from additive Schur complement approximation (ASCA). I...

متن کامل

Approximate cyclic reduction preconditioning

We discuss an iterative method for solving large sparse systems of equations. A hybrid method is introduced which uses ideas both from ILU preconditioning and from multigrid. The resulting preconditioning technique requires the matrix only. A multilevel structure is obtained by using maximal independent sets for graph coarsening. Ideas from [20], [22] are used to construct a sparse Schur comple...

متن کامل

AIAA 2004–0763 Practical Implementation and Improvement of Preconditioning Methods for Explicit Multistage Flow Solvers

Preconditioning methods can help explicit multistage multigrid flow solvers to achieve fast and accurate convergence for a wide range of Mach numbers including incompress-ible flows. The implementation of preconditioning methods and the corresponding matrix dissipation terms in existing flow solvers is a challenging task if good convergence rates are to be obtained. This task can be made more c...

متن کامل

Multigrid preconditioning of steam generator two-phase mixture balance equations in the Genepi software

Within the framework of averaged two-phase mixture flow simulations of PWR Steam Generators (SG), this paper provides a geometric version of a pseudo-FMG FAS preconditioning of the balance equations used in the CEA Genepi code. The 3D steady-state flow is reached by a transient computation using a fractional step algorithm and a projection method. Our application is based on the PVM package. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010